Fixed-Point Logics on Trees
نویسندگان
چکیده
173
منابع مشابه
The decidability of guarded fixed point logic
Guarded fixed point logics are obtained by adding least and greatest fixed points to the guarded fragments of first-order logic that were recently introduced by Andréka, van Benthem and Németi. Guarded fixed point logics can also be viewed as the natural common extensions of the modal μ-calculus and the guarded fragments. In a joint paper with Igor Walukiewicz, we proved recently that the satis...
متن کاملExpressive power of monadic logics on words, trees, pictures, and graphs
We give a survey of the expressive power of various monadic logics on specific classes of finite labeled graphs, including words, trees, and pictures. Among the logics we consider, there are monadic secondorder logic and its existential fragment, the modal mu-calculus, and monadic least fixed-point logic. We focus on nesting-depth and quantifier alternation as a complexity measure of these logics.
متن کاملThe Boundary Between Decidability and Undecidability for Transitive-Closure Logics
To reason effectively about programs it is important to have some version of a transitive closure operator so that we can describe such notions as the set of nodes reachable from a program’s variables. On the other hand, with a few notable exceptions, adding transitive closure to even very tame logics makes them undecidable. In this paper we explore the boundary between decidability and undecid...
متن کاملComparing the Succinctness of Monadic Query Languages over Finite Trees
We study the succinctness of monadic second-order logic and a variety of monadic fixed point logics on trees. All these languages are known to have the same expressive power on trees, but some can express the same queries much more succinctly than others. For example, we show that, under some complexity theoretic assumption, monadic second-order logic is non-elementarily more succinct than mona...
متن کاملComplete Axiomatizations of Fragments of Monadic Second-Order Logic on Finite Trees
We consider a specific class of tree structures that can represent basic structures in linguistics and computer science such as XML documents, parse trees, and treebanks, namely, finite node-labeled sibling-ordered trees. We present axiomatizations of the monadic second-order logic (MSO), monadic transitive closure logic (FO(TC)) and monadic least fixed-point logic (FO(LFP)) theories of this cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010